
In	Computer	Science,	a	data	structure	is	a	particular	way	of	storing	and	organizing	data	in	a

computer	so	that	it	can	be	used	efficiently.	Different	kinds	of	data	structures	are	suited	to

different	kinds	of	applications,	and	some	are	highly	specialized	to	specific	tasks.	For

example,	Stacks	are	used	in	function	call	during	execution	of	a	program,	while	B-trees	are

particularly	well-suited	for	implementation	of	databases.	The	data	structure	can	be	classified

into	following	two	types:

Simple	Data	Structure:	These	data	structures	are	normally	built	from	primitive	data	types

like	integers,	floats,	characters.	For	example	arrays	and	structure.

Compound	Data	Structure:	simple	data	structures	can	be	combined	in	various	ways	to	form

more	complex	structure	called	compound	structures.	Linked	Lists,	Stack,	Queues	and	Trees

are	examples	of	compound	data	structure.

Data	Structure	Arrays

Data	structure	array	is	defined	as	linear	sequence	of	finite	number	of	objects	of	same	type

with	following	set	of	operation:

Creating	:	defining	an	array	of	required	size

Insertion:	addition	of	a	new	data	element	in	the	in	the	array

Deletion:	removal	of	a	data	element	from	the	array

Searching:	searching	for	the	specified	data	from	the	array

Traversing:	processing	all	the	data	elements	of	the	array

Sorting	:	arranging	data	elements	of	the	array	in	increasing	or	decreasing	order

Merging	:	combining	elements	of	two	similar	types	of	arrays	to	form	a	new	array	of

same	type

In	C++	an	array	can	be	defined	as

Datatype	arrayname[size];

Where	size	defines	the	maximum	number	of	elements	can	be	hold	in	the	array.	For	example

Data	Structures

https://studentbro.in https://https://studentbro.in https://https://studentbro.in

admin
Typewritten text
CPP-Data Structures



float	b[10];//b	is	an	array	which	can	store	maximum	10	float	values

int	c[5];

Array	initialization

void	main()

{

int	b[10]={3,5,7,8,9};//

cout<<b[4]<<endl;

cout<<b[5]<<endl;

}

Output	is

90

In	the	above	example	the	statement	int	b[10]={3,5,7,8,9}	assigns	first	5	elements	with	the

given	values	and	the	rest	elements	are	initialized	with	0.	Since	in	C++	index	of	an	array	starts

from	0	to	size-1	so	the	expression	b[4]	denotes	the	5th	element	of	the	array	which	is	9	and

b[5]	denotes	6th	element	which	is	initialized	with	0.

3 5 7 8 9 0 0 0 0 0

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9]

Searching

We	can	use	two	different	search	algorithms	for	searching	a	specific	data	from	an	array

Linear	search	algorithm

Binary	search	algorithm

Linear	search	algorithm

In	Linear	search,	each	element	of	the	array	is	compared	with	the	given	item	to	be	searched

for.	This	method	continues	until	the	searched	item	is	found	or	the	last	item	is	compared.

#include<iostream.h>

int	linear_search(int	a[],	int	size,	int	item)

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



{

int	i=0;

while(i<size&&	a[i]!=item)

i++;

if(i<size)

return	i;//returns	the	index	number	of	the	item	in	the	array

else

return	-1;//given	item	is	not	present	in	the	array	so	it	returns	-1	since	-1	is	not	a	legal	index

number

}

void	main()

{

int	b[8]={2,4,5,7,8,9,12,15},size=8;

int	item;

cout<<”enter	a	number	to	be	searched	for”;

cin>>item;

int	p=linear_search(b,	size,	item);	//search	item	in	the	array	b

if(p==-1)

cout<<item<<”	is	not	present	in	the	array”<<endl;

else

cout<<item	<<”	is	present	in	the	array	at	index	no	“<<p;

}

In	linear	search	algorithm,	if	the	searched	item	is	the	first	elements	of	the	array	then	the

loop	terminates	after	the	first	comparison	(best	case),	if	the	searched	item	is	the	last	element

of	the	array	then	the	loop	terminates	after	size	time	comparison	(worst	case)	and	if	the

searched	item	is	middle	element	of	the	array	then	the	loop	terminates	after	size/2	time

comparisons	(average	case).	For	large	size	array	linear	search	not	an	efficient	algorithm	but

it	can	be	used	for	unsorted	array	also.

Binary	search	algorithm

Binary	search	algorithm	is	applicable	for	already	sorted	array	only.	In	this	algorithm,	to

search	for	the	given	item	from	the	sorted	array	(in	ascending	order),	the	item	is	compared

with	the	middle	element	of	the	array.	If	the	middle	element	is	equal	to	the	item	then	index	of

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



the	middle	element	is	returned,	otherwise,	if	item	is	less	than	the	middle	item	then	the	item

is	present	in	first	half	segment	of	the	array	(i.e.	between	0	to	middle-1),	so	the	next	iteration

will	continue	for	first	half	only,	if	the	item	is	larger	than	the	middle	element	then	the	item	is

present	in	second	half	of	the	array	(i.e.	between	middle+1	to	size-1),	so	the	next	iteration	will

continue	for	second	half	segment	of	the	array	only.	The	same	process	continues	until	either

the	item	is	found	(search	successful)	or	the	segment	is	reduced	to	the	single	element	and	still

the	item	is	not	found	(search	unsuccessful).

#include<iostream.h>

int	binary_search(int	a[	],	int	size,	int	item)

{

int	first=0,last=size-1,middle;

while(first<=last)

{

middle=(first+last)/2;

if(item==a[middle])

return	middle;	//	item	is	found

else	if(item<	a[middle])

last=middle-1;	//item	is	present	in	left	side	of	the	middle	element

else

first=middle+1;	//	item	is	present	in	right	side	of	the	middle	element

}

return	-1;	//given	item	is	not	present	in	the	array,	here,	-1	indicates	unsuccessful	search

}

void	main()

{

int	b[8]={2,4,5,7,8,9,12,15},size=8;

int	item;

cout<<”enter	a	number	to	be	searched	for”;

cin>>item;

int	p=binary_search(b,	size,	item);	//search	item	in	the	array	b

if(p==-1)

cout<<item<<”	is	not	present	in	the	array”<<endl;

else

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



cout<<item	<<”	is	present	in	the	array	at	index	no	“<<p;

}

Let	us	see	how	this	algorithm	work	for	item=12

Initializing	fi	rst	=0	;	last=size-1;	where	size=8

Iteration	1

First=0,	last=7

middle=(first+last)/2=(0+7)/2=3	//	note	integer	division	3.5	becomes	3

value	of	a[middle]	i.e.	a[3]	is	7

7<12	then	first=	middle+1	i.e.	3	+	1	=4

Iteration	2

first=4,	last=7

middle=(first+last)/2=(4+7)/2=5

value	of	a[middle]	i.e.	a[5]	is	9

9<12	then	first=middle+1;5+1=6

Iteration	3

first=6,last=7

middle=(first+last)/2	=	(6+7)/2=6

value	of	a[middle]	i.e.	a[6]	is	12	which	is	equal	to	the	value	of	item	being	search	i.e.12	As	a

successful	search	the	function	binary_search()	will	return	to	the	main	function	with	value	6

as	index	of	12	in	the	given	array.	In	main	function	p	hold	the	return	index	number.

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



Note	that	each	iteration	of	the	algorithm	divides	the	given	array	in	to	two	equal	segments

and	the	only	one	segment	is	compared	for	the	search	of	the	given	item	in	the	next	iteration.

For	a	given	array	of	size	N=	2n	elements,	maximum	n	number	of	iterations	are	required	to

make	sure	whether	the	given	item	is	present	in	the	given	array	or	not,	where	as	the	linear

requires	maximum	2n	number	of	iteration.	For	example,	the	number	of	iteration	required	to

search	an	item	in	the	given	array	of	1000	elements,	binary	search	requires	maximum

10	iterations	where	as	linear	search	requires	maximum	1000	iterations.

Inserting	a	new	element	in	an	array

We	can	insert	a	new	element	in	an	array	in	two	ways

If	the	array	is	unordered,	the	new	element	is	inserted	at	the	end	of	the	array

If	the	array	is	sorted	then	the	new	element	is	added	at	appropriate	position	without

altering	the	order.	To	achieve	this,	all	elements	greater	than	the	new	element	are

shifted.	For	example,	to	add	10	in	the	given	array	below:

Following	program	implement	insertion	operation	for	sorted	array

#include<iostream.h>

void	insert(int	a[	],	int	&n,	int	item)	//n	is	the	number	of	elements	already	present	in	the	array

{

int	i=n-1;

while	(i>=0	&&	a[i]>item)

{

a[i+1]=a[i];	//	shift	the	ith	element	one	position	towards	right

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



i--;

}

a[i+1]=item;	//insertion	of	item	at	appropriate	place

n++;	//after	insertion,	number	of	elements	present	in	the	array	is	increased	by	1

}

void	main()

{int	a[10]={2,4,5,7,8,11,12,15},n=8;

int	i=0;

cout<<“Original	array	is:\n”;

for(i=0;i<n;i++)

cout<<a[i]<<”,	“;

insert(a,n,10);

cout<<”\nArray	after	inserting	10	is:\n”;

for(i=0;	i<n;	i++)

cout<<a[i]<<”,	“;

}

Output	is

Original	array	is:

2,	4,	5,	7,	8,	11,	12,	15

Array	after	inserting	10	is:

2,	4,	5,	7,	8,	10,	11,	12,	15

Deletion	of	an	item	from	a	sorted	array

In	this	algorithm	the	item	to	be	deleted	from	the	sorted	array	is	searched	and	if	the	item	is

found	in	the	array	then	the	element	is	removed	and	the	rest	of	the	elements	are	shifted	one

position	toward	left	in	the	array	to	keep	the	ordered	array	undisturbed.	Deletion	operation

reduces	the	number	of	elements	present	in	the	array	by1.	For	example,	to	remove	11	from

the	given	array	below:

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



Following	program	implement	deletion	operation	for	sorted	array

#include<iostream.h>

void	delete_item(int	a[	],	int	&n,	int	item)	//n	is	the	number	of	elements	already	present	in	the

array

{int	i=0;

while(i<n	&&	a[i]<item)

i++;

if	(a[i]==item)	//	given	item	is	found

{while	(i<n)

{a[i]=a[i+1];	//	shift	the	(i+1)th	element	one	position	towards	left

i++;

}

cout<<”\n	Given	item	is	successfully	deleted”;

}

else

cout<<”\n	Given	item	is	not	found	in	the	array”;

n--;

}

void	main()

{int	a[10]={2,4,5,7,8,11,12,15},n=8;

int	i=0;

cout<<“Original	array	is	:\n”;

for(i=0;i<n;i++)

cout<<a[i]<<”,	“;

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



delete_item(a,n,11);

cout<<”\nArray	after	deleting	11	is:\n”;

for(i=0;	i<n;	i++)

cout<<a[i]<<”,	“;

}

Output	is

Original	array	is:

2,	4,	5,	7,	8,	11,	12,	15

Given	item	is	successfully	deleted

Array	after	deleting	11	is:

2,	4,	5,	7,	8,	12,	15

Traversal

Processing	of	all	elements	(i.e.	from	first	element	to	the	last	element)	present	in	one-

dimensional	array	is	called	traversal.	For	example,	printing	all	elements	of	an	array,	finding

sum	of	all	elements	present	in	an	array.

#include<iostream.h>

void	print_array(int	a[	],	int	n)	//n	is	the	number	of	elements	present	in	the	array

{int	i;

cout<<”\n	Given	array	is	:\n”;

for(i=0;	i<n;	i++)

cout<<a[i]<<”,	“;

}

int	sum(int	a[	],	int	n)

{int	i,s=0;

for(i=0;	i<n;	i++)

s=s+a[i];

return	s;

}

void	main()

{int	b[10]={3,5,6,2,8,4,1,12,25,13},n=10;

int	i,	s;

print_array(b,n);

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



s=sum(b,n);

cout<<”\n	Sum	of	all	elements	of	the	given	array	is	:	”<<s;

}

Output	is

Given	array	is

3,	5,	6,	2,	8,	4,	1,	12,	25,	13

Sum	of	all	elements	of	the	given	array	is	:	79

Sorting

The	process	of	arranging	the	array	elements	in	increasing	(ascending)	or	decreasing

(descending)	order	is	known	as	sorting.	There	are	several	sorting	techniques	are	available

e.g.	selection	sort,	insertion	sort,	bubble	sort,	quick	sort,	heap	short	etc.	But	in	CBSE	syllabus

only	selection	sort,	insertion	sort,	bubble	sort	are	specified.

Selection	Sort

The	basic	idea	of	a	selection	sort	is	to	repeatedly	select	the	smallest	element	in	the	remaining

unsorted	array	and	exchange	the	selected	smallest	element	with	the	first	element	of	the

unsorted	array.	For	example,	consider	the	following	unsorted	array	to	be	sorted	using

selection	sort.

Original	Array

Iteration	1	:	Select	the	smallest	element	from	unsorted	array	which	is	3	and	exchange	3	with

the	first	element	of	the	unsorted	array	i.e.	exchange	3	with	8.	After	iteration	1	the	element	3

is	at	its	final	position	in	the	array.

Iteration	2:	The	second	pass	identify	4	as	the	smallest	element	and	then	exchange	4	with	5

Iteration	3:	The	third	pass	identify	5	as	the	smallest	element	and	then	exchange	5	with	9

Iteration	4:	The	third	pass	identify	7	as	the	smallest	element	and	then	exchange	7	with	8

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



Iteration	5:	The	third	pass	identify	8	as	the	smallest	element	and	then	exchange	8	with	16

Iteration	6:	The	third	pass	identify	9	as	the	smallest	element	and	then	exchange	9	with	9

which	makes	no	effect.

The	unsorted	array	with	only	one	element	i.e.	16	is	already	at	its	appropriate	position	so	no

more	iteration	is	required.	Hence	to	sort	n	numbers,	the	number	of	iterations	required	is	n-1,

where	in	each	next	iteration,	the	number	of	comparison	required	to	find	the	smallest

element	is	decreases	by	1	as	in	each	pass	one	element	is	selected	from	the	unsorted	part	of

the	array	and	moved	at	the	end	of	sorted	part	of	the	array	.

For	n=7	the	total	number	of	comparison	required	is	calculated	as

Pass1:	6	comparisons	i.e.	(n-1)

Pass2:	5	comparisons	i.e.	(n-2)

Pass3:	4	comparisons	i.e.	(n-3)

Pass4:	3	comparisons	i.e.	(n-4)

Pass5:	2	comparisons	i.e.	(n-5)

Pass6:	1	comparison	i.e.	(n-6)=(n-(n-1))

Total	comparison	for	n=(n-1)+(n-2)+(n-3)+	……….+(n-(n-1))=	n(n-1)/2

7=6+5+4+3+2+1=7*6/2=21;

Note:	For	given	array	of	n	elements,	selection	sort	always	executes	n(n-1)/2	comparison

statements	irrespective	of	whether	the	input	array	is	already	sorted(best	case),	partially

sorted(average	case)	or	totally	unsorted(i.e.	in	reverse	order)(worst	case).

#include<iostream.h>

void	select_sort(int	a[	],	int	n)	//n	is	the	number	of	elements	present	in	the	array

{int	i,	j,	p,	small;

for(i=0;i<n-1;i++)

{small=a[i];	//	initialize	small	with	the	first	element	of	unsorted	part	of	the	array

p=i;	//	keep	index	of	the	smallest	number	of	unsorted	part	of	the	array	in	p

for(j=i+1;	j<n;	j++)	//loop	for	selecting	the	smallest	element	form	unsorted	array

{if(a[j]<small)

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



{small=a[j];

p=j;

}

}//	end	of	inner	loop----------

//----------exchange	the	smallest	element	with	ith	element-------------

a[p]=a[i];

a[i]=small;

//-----------end	of	exchange-------------

}

}//end	of	function

void	main(	)

{int	a[7]={8,5,9,3,16,4,7},n=7,i;

cout<<”\n	Original	array	is	:\n”;

for(i=0;i<n;i++)

cout<<a[i]<<”,	“;

select_sort(a,n);

cout<<”\nThe	sorted	array	is:\n”;

for(i=0;	i<n;	i++)

cout<<a[i]<<”,	“;

}

Output	is

Original	array	is

8,	5,	9,	3,	16,	4,	7

The	sorted	array	is

3,	4,	5,	7,	8,	9,	16

Insertion	Sort

Insertion	sort	algorithm	divides	the	array	of	n	elements	in	to	two	subparts,	the	first	subpart

contain	a[0]	to	a[k]	elements	in	sorted	order	and	the	second	subpart	contain	a[k+1]	to	a[n]

which	are	to	be	sorted.	The	algorithm	starts	with	only	first	element	in	the	sorted	subpart

because	array	of	one	element	is	itself	in	sorted	order.	In	each	pass,	the	first	element	of	the

unsorted	subpart	is	removed	and	is	inserted	at	the	appropriate	position	in	the	sorted	array

so	that	the	sorted	array	remain	in	sorted	order	and	hence	in	each	pass	the	size	of	the	sorted

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



subpart	is	increased	by	1	and	size	of	unsorted	subpart	is	decreased	by	1.	This	process

continues	until	all	n-1	elements	of	the	unsorted	arrays	are	inserted	at	their	appropriate

position	in	the	sorted	array.

For	example,	consider	the	following	unsorted	array	to	be	sorted	using	selection	sort

Original	array

Initially	the	sorted	subpart	contains	only	one	element	i.e.	8	and	the	unsorted	subpart

contains	n-1	elements	where	n	is	the	number	of	elements	in	the	given	array.

Iteration	1:	To	insert	first	element	of	the	unsorted	subpart	i.e.	5	into	the	sorted	subpart,	5	is

compared	with	all	elements	of	the	sorted	subpart	starting	from	rightmost	element	to	the

leftmost	element	whose	value	is	greater	than	5,	shift	all	elements	of	the	sorted	subpart	whose

value	is	greater	than	5	one	position	towards	right	to	create	an	empty	place	at	the	appropriate

position	in	the	sorted	array,	store	5	at	the	created	empty	place,	here	8	will	move	from

position	a[0]	to	a[1]	and	a[0]	is	filled	by	5.	After	first	pass	the	status	of	the	array	is:

Iteration	2:	In	second	pass	9	is	the	first	element	of	the	unsorted	subpart,	9	is	compared	with

8,	since	8	is	less	than	9	so	no	shifting	takes	place	and	the	comparing	loop	terminates.	So	the

element	9	is	added	at	the	rightmost	end	of	the	sorted	subpart.	After	second	pass	the	status	of

the	array	is:

Iteration	3:	in	third	pass	3	is	compared	with	9,	8	and	5	and	shift	them	one	position	towards

right	and	insert	3	at	position	a[0].	After	third	pass	the	status	of	the	array	is:

Iteration	4:	in	forth	pass	16	is	greater	than	the	largest	number	of	the	sorted	subpart	so	it

remains	at	the	same	position	in	the	array.	After	fourth	pass	the	status	of	the	array	is:

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



Iteration	5:	in	fifth	pass	4	is	inserted	after	3.	After	third	pass	the	status	of	the	array	is:

Iteration	6:	in	sixth	pass	7	is	inserted	after	5.	After	fifth	pass	the	status	of	the	array	is:

Insertion	sort	take	advantage	of	sorted(best	case)	or	partially	sorted(average	case)	array

because	if	all	elements	are	at	their	right	place	then	in	each	pass	only	one	comparison	is

required	to	make	sure	that	the	element	is	at	its	right	position.	So	for	n=7	only	6	(i.e.	n-1)

iterations	are	required	and	in	each	iteration	only	one	comparison	is	required	i.e.	total

number	of	comparisons	required=	(n-1)=6	which	is	better	than	the	selection	sort	(for	sorted

array	selection	sort	required	n(n-1)/2	comparisons).	Therefore	insertion	sort	is	best	suited	for

sorted	or	partially	sorted	arrays.

#include<iostream.h>

void	insert_sort(int	a[	],int	n)	//n	is	the	no	of	elements	present	in	the	array

{int	i,	j,p;

for	(i=1;	i<n;	i++)

{p=a[i];

j=i-1;

//inner	loop	to	shift	all	elements	of	sorted	subpart	one	position	towards	right

while(j>=0&&a[j]>p)

{

a[j+1]=a[j];

j--;

}

//---------end	of	inner	loop

a[j+1]=p;	//insert	p	in	the	sorted	subpart

}

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



}

void	main(	)

{

int	a[7]={8,5,9,3,16,4,7},n=7,i;

cout<<”\n	Original	array	is	:\n”;

for(i=0;i<n;i++)

cout<<a[i]<<”,	“;

insert_sort(a,n);

cout<<”\nThe	sorted	array	is:\n”;

for(i=0;	i<n;	i++)

cout<<a[i]<<”,	“;

}

Output	is

Original	array	is

8,	5,	9,	3,	16,	4,	7

The	sorted	array	is

3,	4,	5,	7,	8,	9,	16

Bubble	Sort

Bubble	sort	compares	a[i]	with	a[i+1]	for	all	i=0..n-2,	if	a[i]	and	a[i+1]	are	not	in	ascending

order	then	exchange	a[i]	with	a[i+1]	immediately.	After	each	iteration	all	elements	which	are

not	at	their	proper	position	move	at	least	one	position	towards	their	right	place	in	the	array.

The	process	continues	until	all	elements	get	their	proper	place	in	the	array	(i.e.	algorithm

terminates	if	no	exchange	occurs	in	the	last	iteration)

For	example,	consider	the	following	unsorted	array	to	be	sorted	using	selection	sort

Original	array

Iteration	1:	The	element	a[0]	i.e.	8	is	compared	with	a[1]	i.e.	5,	since	8>5	therefore	exchange

8	with	5.

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



The	element	a[1]	i.e.	8	and	a[2]	i.e.	9	are	already	in	ascending	order	so	no	exchange	required

The	element	a[2]	i.e.	9	and	a[3]	i.e.	3	are	not	in	ascending	order	so	exchange	a[2]	with	a[3]

The	element	a[3]	i.e.	9	and	a[4]	i.e.	16	are	in	ascending	order	so	no	exchange	required

The	element	a[4]	i.e.	16	and	a[5]	i.e.	4	are	not	in	ascending	order	so	exchange	a[4]	with	a[5]

The	element	a[5]	i.e.	16	and	a[6]	i.e.	7	are	not	in	ascending	order	so	exchange	a[5]	with	a[6]

Since	in	iteration	1	some	elements	were	exchanged	with	each	other	which	shows	that	array

was	not	sorted	yet,	next	iteration	continues.	The	algorithm	will	terminate	only	if	the	last

iteration	do	not	process	any	exchange	operation	which	assure	that	all	elements	of	the	array

are	in	proper	order.

Iteration	2:	only	exchange	operations	are	shown	in	each	pass

In	iteration	2	some	exchange	operations	were	processed,	so,	at	least	one	more	iteration	is

required	to	assure	that	array	is	in	sorted	order.

Iteration	3:

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



Iteration	4:

Iteration	5:

In	iteration	5	no	exchange	operation	executed	because	all	elements	are	already	in	proper

order	therefore	the	algorithm	will	terminate	after	5th	iteration.

Merging	of	two	sorted	arrays	into	third	array	in	sorted	order

Algorithm	to	merge	arrays	a[m](sorted	in	ascending	order)	and	b[n](sorted	in	descending

order)	into	third	array	C[n+m]	in	ascending	order.

#include<iostream.h>

Merge(int	a[	],	int	m,	int	b[n],	int	c[	])//	m	is	size	of	array	a	and	n	is	the	size	of	array	b

{int	i=0;	//	i	points	to	the	smallest	element	of	the	array	a	which	is	at	index	0

int	j=n-1;//	j	points	to	the	smallest	element	of	the	array	b	which	is	at	the	index	m-1	since	b	is

//	sortet	in	descending	order

int	k=0;	//k	points	to	the	first	element	of	the	array	c

while(i<m&&j>=0)

{if(a[i]<b[j])

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



c[k++]=a[i++];	//	copy	from	array	a	into	array	c	and	then	increment	i	and	k

else

c[k++]=b[j--];	//	copy	from	array	b	into	array	c	and	then	decrement	j	and	increment	k

}

while(i<m)	//copy	all	remaining	elements	of	array	a

c[k++]=a[i++];

while(j>=0)	//copy	all	remaining	elements	of	array	b

c[k++]=b[j--];

}

void	main()

{int	a[5]={2,4,5,6,7},m=5;	//a	is	in	ascending	order

int	b[6]={15,12,4,3,2,1},n=6;	//b	is	in	descending	order

int	c[11];

merge(a,	m,	b,	n,	c);

cout<<”The	merged	array	is	:\n”;

for(int	i=0;	i<m+n;	i++)

cout<<c[i]<”,	“;

}

Output	is

The	merged	array	is:

1,	2,	2,	3,	4,	4,	5,	6,	7,	12,	15

Two	dimensional	arrays

In	computing,	row-major	order	and	column-major	order	describe	methods	for	storing

multidimensional	arrays	in	linear	memory.	Following	standard	matrix	notation,	rows	are

identified	by	the	first	index	of	a	two-dimensional	array	and	columns	by	the	second	index.

Array	layout	is	critical	for	correctly	passing	arrays	between	programs	written	in	different

languages.	Row-major	order	is	used	in	C,	C++;	columnmajor	order	is	used	in	Fortran	and

MATLAB.

Row-major	order

In	row-major	storage,	a	multidimensional	array	in	linear	memory	is	accessed	such	that	rows

are	stored	one	after	the	other.	When	using	row-major	order,	the	difference	between

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



addresses	of	array	cells	in	increasing	rows	is	larger	than	addresses	of	cells	in	increasing

columns.	For	example,	consider	this	2×3	array:

An	array	declared	in	C	as

int	A[2][3]	=	{	{1,	2,	3},	{4,	5,	6}	};

would	be	laid	out	contiguously	in	linear	memory	as:

1	2	3	4	5	6

To	traverse	this	array	in	the	order	in	which	it	is	laid	out	in	memory,	one	would	use	the

following	nested

loop:

for	(i	=	0;	i	<	2;	i++)

for	(j	=	0;	j	<	3;	j++)

cout<<A[i][j];

The	difference	in	offset	from	one	column	to	the	next	is	1*sizeof(type)	and	from	one	row	to

the	next	is	3*sizeof(type).	The	linear	offset	from	the	beginning	of	the	array	to	any	given

element	A[row][column]	can	then	be	computed	as:

offset	=	row*NUMCOLS	+	column

Address	of	element	A[row][column]	can	be	computed	as:

Address	of	A[row][column]=base	address	of	A	+	(row*NUMCOLS	+	column)*	sizeof	(type)

Where	NUMCOLS	is	the	number	of	columns	in	the	array.

The	above	formula	only	works	when	using	the	C,	C++	convention	of	labeling	the	first	element

0.	In	other	words,	row	1,	column	2	in	matrix	A,	would	be	represented	as	A[0][1]

Note	that	this	technique	generalizes,	so	a	2×2×2	array	looks	like:

int	A[2][2][2]	=	{{{1,2},	{3,4}},	{{5,6},	{7,8}}};

and	the	array	would	be	laid	out	in	linear	memory	as:

1	2	3	4	5	6	7	8

STACKS,	QUEUES	AND	LINKED	LIST

Stack

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



In	computer	science,	a	stack	is	a	last	in,	first	out	(LIFO)	data	structure.	A	stack	can	is

characterized	by	only	two	fundamental	operations:	push	and	pop.	The	push	operation	adds

an	item	to	the	top	of	the	stack.	The	pop	operation	removes	an	item	from	the	top	of	the	stack,

and	returns	this	value	to	the	caller.	A	stack	is	a	restricted	data	structure,	because	only	a

small	number	of	operations	are	performed	on	it.	The	nature	of	the	pop	and	push	operations

also	mean	that	stack	elements	have	a	natural	order.	Elements	are	removed	from	the	stack	in

the	reverse	order	to	the	order	of	their	addition:	therefore,	the	lower	elements	are	those	that

have	been	on	the	stack	the	longest.	One	of	the	common	uses	of	stack	is	in	function	call.

Stack	using	array

#include<iostream.h>

const	int	size=5

class	stack

{int	a[size];	//array	a	can	store	maximum	5	item	of	type	int	of	the	stack

int	top;	//top	will	point	to	the	last	item	pushed	onto	the	stack

public:

stack(){top=-1;}	//constructor	to	create	an	empty	stack,	top=-1	indicate	that	no	item	is

//present	in	the

array

void	push(int	item)

{If(top==size-1)

cout<<”stack	is	full,	given	item	cannot	be	added”;

else

a[++top]=item;	//increment	top	by	1	then	item	at	new	position	of	the	top	in	the	array	a

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



}

int	pop()

{If	(top==-1)

{out<<”Stack	is	empty	“;

return	-1;	//-1	indicates	empty	stack

}

else

return	a[top--];//return	the	item	present	at	the	top	of	the	stack	then	decrement	top	by	1

}

void	main()

{	stack	s1;

s1.push(3);

s1.push(5);

cout<<s1.pop()<<endl;

cout<<s1.pop()<<endl;

cout<<s1.pop	();

}

Output	is

5

3

Stack	is	empty	-1

In	the	above	program	the	statement	stack	s1	creates	s1	as	an	empty	stack	and	the	constructor

initialize	top	by	-1.

After	first	s1.pop()	statement,	the	item	5	is	removed	from	the	stack	and	top	moves	from	1	to	0

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



After	second	s1.pop()	statement,	the	item	3	is	removed	from	stack	and	top	moves	from	0	to	-1

which	indicates	that	now	stack	is	empty.

After	third	s1.pop()	statement	the	pop	function	display	error	message	“stack	is	empty”	and

returns	-1	to	indicating	that	stack	is	empty	and	do	not	change	the	position	of	top	of	the	stack.

Linked	list

In	Computer	Science,	a	linked	list	(or	more	clearly,	"singly-linked	list")	is	a	data	structure	that

consists	of	a	sequence	of	nodes	each	of	which	contains	data	and	a	pointer	which	points	(i.e.,

a	link)	to	the	next	node	in	the	sequence.

The	main	benefit	of	a	linked	list	over	a	conventional	array	is	that	the	list	elements	can	easily

be	added	or	removed	without	reallocation	or	reorganization	of	the	entire	structure	because

the	data	items	need	not	be	stored	contiguously	in	memory	or	on	disk	.Stack	using	linked	lists

allow	insertion	and	removal	of	nodes	only	at	the	position	where	the	pointer	top	is	pointing

to.

Stack	implementation	using	linked	list

#include<iostream.h>

struct	node

{i

nt	item;	//data	that	will	be	stored	in	each	node

node	*	next;	//pointer	which	contains	address	of	another	node

};	//node	is	a	self	referential	structure	which	contains	reference	of	another	object	type	node

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



class	stack

{node	*top;

public:

stack()	//constructor	to	create	an	empty	stack	by	initializing	top	with	NULL

{	top=NULL;	}

void	push(int	item);

int	pop();

~stack();

};

void	stack::push(int	item)	//to	insert	a	new	node	at	the	top	of	the	stack

{node	*t=new	node;	//dynamic	memory	allocation	for	a	new	object	of	node	type

if(t==NULL)

cout<<”Memory	not	available,	stack	is	full”;

else

{t->item=item;

t->next=top;	//newly	created	node	will	point	to	the	last	inserted	node	or	NULL	if

//stack	is	empty

top=t;	//top	will	point	to	the	newly	created	node

}

}

int	stack::pop()//to	delete	the	last	inserted	node(which	is	currently	pointed	by	the	top)

{if(top==NULL)

{cout<<”Stack	is	empty	\n”;

return	0;	//	0	indicating	that	stack	is	empty

}

else

{node	*t=top;	//save	the	address	of	top	in	t

int	r=top->item;	//store	item	of	the	node	currently	pointed	by	top

top=top->next;	//	move	top	from	last	node	to	the	second	last	node

delete	t;	//remove	last	node	of	the	stack	from	memory

return	r;

}

}

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



stack::~stack()	//de-allocated	all	undeleted	nodes	of	the	stack	when	stack	goes	out	of	scope

{node	*t;

while(top!=NULL)

{t=top;

top=top->next;

delete	t;

}

};

void	main()

{

stack	s1;

s1.push(3);

s1.push(5);

s1.push(7);

cout<<s1.pop()<<endl;

cout<<s1.pop()<<endl;

cout<<s1.pop()<<endl;

cout<<s1.pop()<<endl;

}

Output	is

7

5

3

Stack	is	empty	0

In	the	above	program	the	statement	stack	s1;	invokes	the	constructor	stack()	which	create	an

empty	stack	object	s1	and	initialize	top	with	NULL.

After	statement	s1.push(3)	the	stack	become

After	statement	s1.push(5)	the	stack	become

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



After	statement	s1.push(7)	the	stack	become

After	the	first	s1.pop()	statement	the	node	currently	pointed	by	top	(i.e.	node	containing	7)	is

deleted	from	the	stack,	after	deletion	the	status	of	stack	is

After	the	third	s1.pop()	statement	the	node	currently	pointed	by	top	(i.e.	node	containing	3)	is

deleted	from	the	stack,	after	deletion	the	stack	become	empty	i.e.

After	the	fourth	s1.pop()	statement,	the	error	message	“stack	is	empty“	displayed	and	the

pop()	function	return	0	to	indicate	that	stack	is	empty.

Application	of	stacks	in	infix	expression	to	postfix	expression	conversion

Infix	expression	operand1	operator	operand2	for	example	a+b

Postfix	expression	operand1	operand2	operator	for	example	ab+

Prefix	expression	operator	operand1	operand2	for	example	+ab

Some	example	of	infix	expression	and	their	corresponding	postfix	expression

Infix	Expression Postfix	expression

a*(b-c)/e

(a+b)*(c-d)/e

(a+b*c)/(d-e)+f

abc-*e/

ab+cd-*e/

abc*+de-/f

Algorithm	to	convert	infix	expression	to	postfix	expression	using	stack

Let	the	infix	expression	INEXP	is	to	be	converted	in	to	equivalent	postfix	expression

POSTEXP.	The	postfix	expression	POSTEXP	will	be	constructed	from	left	to	right	using	the

operands	and	operators	(except	“(“,	and	“)”)	from	INEXP.	The	algorithm	begins	by	pushing	a

left	parenthesis	onto	the	empty	stack,	adding	a	right	parenthesis	at	the	end	of	INEXP,	and

initializing	POSTEXP	with	null.	The	algorithm	terminates	when	stack	become	empty.

The	algorithm	contains	following	steps

1.	 Initialize	POSTEXP	with	null

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



2.	 Add	‘)’	at	the	end	of	INEXP

3.	 Create	an	empty	stack	and	push	‘(‘	on	to	the	stack

4.	 Initialize	i=0,j=0

5.	 Do	while	stack	is	not	empty

6.	 If	INEXP[i]	is	an	operand	then

POSTEXP[j]=INEXP[i]

I=i+1

j=j+1

Goto	step	5

7.	 If	INEXP[i]	is	‘(‘	then	push	(INEXP[i])

i=i+1

Goto	step	5

8.	 If	INEXP[i]	is	an	operator	then

While	precedence	of	the	operator	at	the	top	of	the	stack	>	precedence	of	operator

POSTEXP[j]=pop()

J=j+1

End	of	while

Push	(INEXP[i])

I=i+1

Goto	step	5

9.	 If	INEXP[i]	is	‘)’	then

While	the	operator	at	the	top	of	the	stack	is	not	‘(‘

POSTEXP[j]=pop()

J=j+1

End	while

Pop()

10.	 End	of	step	5

11.	 End	algorithm

For	example	convert	the	infix	expression	(A+B)*(C-D)/E	into	postfix	expression	showing	stack

status	after	every	step.

Symbol	scanned	from	infix
Stack	status	(	bold	letter

shows	the	top	of	the	stack)
Postfix	expression

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



	 ( 	

( (( 	

A (( A

+ ((+ A

B ((+ AB

) ( AB+

* (* AB+

( (*( AB+

C (*( AB+C

- (*(- AB+C

D (*(- AB+CD

) (* AB+CD-

/ (/ AB+CD-*

E (/ AB+CD-*E

) AB+CD-*E/ 	

Answer:	Postfix	expression	of	(A+B)*(C-D)/E	is	AB+CD-*E/

Evaluation	of	Postfix	expression	using	Stack

Algorithm	to	evaluate	a	postfix	expression	P.

1.	 Create	an	empty	stack

2.	 i=0

3.	 while	P[i]	!=	NULL

if	P[i]	is	operand	then

Push(P[i])

I=i+1

Else	if	P[i]	is	a	operator	then

Operand2=pop()

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



Operand1=pop()

Push	(Operand1	operator	Operator2)

End	if

4.	 End	of	while

5.	 return	pop()	//	return	the	calculated	value	which	available	in	the	stack.

End	of	algorithm

Example:	Evaluate	the	following	postfix	expression	showing	stack	status	after	every	step

8,	2,	+,	5,	3,	-,	*,	4	/

token

scanned

from

postfix

expression

Stack	status	(	bold	letter	shows	the	top	of	the	stack)

after	processing	the	scanned	token

Operation

performed

8 8 Push	8

2 8,	2 Push	2

+ 10

Op2=pop()	i.e

2

Op1=pop()	i.e

8

Push(op1+op2)

i.e.	8+2

5 10,	5 Push(5)

3 10,	5,	3 Push(3)

- 10,	2

Op2=pop()	i.e.

3

Op1=pop()	i.e.

5

Push(op1-op2)

i.e.	5-3

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



* 20

Op2=pop()	i.e.

2

Op1=pop()	i.e.

10

Push(op1-op2)

i.e.	10*2

4 20,	4 Push	4

/ 5

Op2=pop()	i.e.

4

Op1=pop()	i.e.

20

Push(op1/op2)

i.e.	20/4

NULL Final	result	5
Pop	5	and

return	5

Evaluate	the	following	Boolean	postfix	expression	showing	stack	status	after	every	step

True,	False,	True,	AND,	OR,	False,	NOT,	AND

token

scanned

from

postfix

expression

Stack	status	(	bold	letter	shows	the	top	of	the

stack)	after	processing	the	scanned	token
Operation	performed

True True Push	True

False True,	False Push	False

True True,	False,	True Push	True

AND True,	False

Op2=pop()	i.e.	True

Op1=pop()	i.e.	False

Push(Op2	AND	Op1)	i.e.

False	AND

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



True=False

OR True

Op2=pop()	i.e.	False

Op1=pop()	i.e.	True

Push(Op2	OR	Op1)	i.e.

True	OR	False=True

False True,	False Push	False

NOT True,	True

Op1=pop()	i.e.	False

Push(NOT	False)	i.e.

NOT	False=True

AND True

Op2=pop()	i.e.	True

Op1=pop()	i.e.	True

Push(Op2	AND	Op1)	i.e.

True	AND

True=True

NULL Final	result	True
Pop	True	and	Return

True

QUEUE

Queue	is	a	linear	data	structure	which	follows	First	In	First	Out	(FIFO)	rule	in	which	a	new

item	is	added	at	the	rear	end	and	deletion	of	item	is	from	the	front	end	of	the	queue.	In	a

FIFO	data	structure,	the	first	element	added	to	the	queue	will	be	the	first	one	to	be	removed.

Linear	Queue	implementation	using	Array

#include<iostream.h>

const	int	size=5;

class	queue

{int	front	,	rear;

int	a[size];

public:

queue(){front=0;rear=0;}	//Constructor	to	create	an	empty	queue

void	addQ()

{	if(rear==size)

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



cout<<”queue	is	full<<endl;

else

a[rear++]=item;

}

int	delQ()

{if(front==rear)

{cout<<”queue	is	empty”<<endl;	return	0;}

else

return	a[front++];

}}

void	main()

{queue	q1;

q1.addQ(3);

q1.addQ(5)	;

q1.addQ(7)	;

cout<<q1.delQ()<<endl	;

cout<<q1.delQ()<<endl	;

cout<<q1.delQ()<<endl;

cout<<q1.delQ()<<endl;

}

Output	is

3

5

7

Queue	is	empty	0

In	the	above	program	the	statement	queue	q1	creates	an	empty	queue	q1.

After	execution	of	the	statement	q1.addQ(3),	status	of	queue	is

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



After	execution	of	the	statement	q1.addQ(5),	status	of	queue	is

After	execution	of	the	statement	q1.addQ(7),	status	of	queue	is

After	execution	of	the	first	cout<<q1.delQ()	statement,	3	is	deleted	from	queue	status	of

queue	is

After	execution	of	the	second	cout<<q1.delQ()	statement,	5	is	deleted	from	the	queue	status	of

queue	is

After	execution	of	the	third	cout<<q1.delQ()	statement,	7	is	deleted	from	the	queue.	The

status	of	queue	is	Empty

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



After	execution	of	the	fourth	cout<<q1.delQ()	statement,	the	message	“queue	is	empty“

displayed	and	status	of	queue	is

Note	that	since	rear	and	front	moves	only	in	one	direction	therefore	once	the	rear	cross	the

last	element	of	the	array(i.e.	rear==size)	then	even	after	deleting	some	element	of	queue	the

free	spaces	available	in	queue	cannot	be	allocated	again	and	the	function	delQ()	display

error	message	“queue	is	full”.

Queue	using	linked	list

#include<iostream.h>

struct	node{

int	item;

node	*next;};

class	queue

{node	*front,	*rear;

public:

queue()	{front=NULL;	rear=NULL;}//constructor	to	create	empty	queue

void	addQ(int	item);

int	delQ();};

void	queue::addQ(int	item)

{node	*	t=new	node;

if(t==NULL)

cout<<”memory	not	available,	queue	is	full”<<endl;

else

{t->item=item;

t->next=NULL;

if	(rear==NULL)	//if	the	queue	is	empty

{rear=t;	front=t;	//rear	and	front	both	will	point	to	the	first	node

}

else

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



{rear->next=t;

rear=t;

}	}}

int	queue::delQ()

{

if(front==NULL)

cout<<”queue	is	empty”<<return	0;

else

{node	*t=front;

int	r=t->item;

front=front->next;	//move	front	to	the	next	node	of	the	queue

if(front==NULL)

rear==NULL;

delete	t;

return	r;

}

}

void	main(){

queue	q1;

q1.addQ(3);

q1.addQ(5)	;

q1.addQ(7)	;

cout<<q1.delQ()<<endl	;

cout<<q1.delQ()<<endl	;

cout<<q1.delQ()<<endl;

cout<<q1.delQ()<<endl;

}

Output	is

3

5

7

Queue	is	empty	0

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



In	the	above	program	the	statement	queue	q1;	invokes	the	constructor	queue()	which	create

an	empty	queue	object	q1	and	initialize	front	and	rear	with	NULL.

After	statement	q1.addQ(3)	the	stack	become

After	statement	q1.addQ(5)	the	stack	become

After	statement	q1.addQ(7)	the	stack	become

After	the	first	q1.delQ()	statement	the	node	currently	pointed	by	front	(i.e.	node	containing	3)

is	deleted	from	the	queue,	after	deletion	the	status	of	queue	is

After	the	second	q1.delQ()	statement	the	node	currently	pointed	by	front	(i.e.	node

containing	5)	is	deleted	from	the	queue,	after	deletion	the	status	of	queue	is

After	the	third	q1.delQ()	statement	the	node	currently	pointed	by	front	(i.e.	node	containing

7)	is	deleted	from	the	queue,	after	deletion	the	queue	become	empty	therefore	NULL	is	a

assigned	to	both	rear	and	front

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



Front=rear=	NULL;

After	the	fourth	q1.delQ()	statement,	the	error	message	“queue	is	empty“	displayed	and	the

pop()	function	return	0	to	indicate	that	queue	is	empty.

Circular	queue	using	array

Circular	queues	overcome	the	problem	of	unutilised	space	in	linear	queues	implemented	as

array.	In	circular	queue	using	array	the	rear	and	front	moves	in	a	circle	from	0,1,2…size-1,0,

and	so	on.

#include<iostream.h>

const	int	size=4;

class	Cqueue

{int	a[size];

int	front,rear,anyitem;

public:

void	Cqueue(){front=0;rear=0;anyitem=0;}

void	addCQ(int	item);

int	delCQ();

};

void	Cqueue::addCQ(int	item){

if(front==rear	&&	anyitem>0)

cout<<”Cqueue	is	full”<<endl;

else

{a[rear]=item;

rear=(rear+1)%size;	//rear	will	move	in	circular	order

anyitem++;	//value	of	the	anyitem	contains	no	of	items	present	in	the	queue

}}

int	Cqueue::delCQ(){

if(front==rear&&	anyitem==0)

cout<<”Cqueue	is	empty”<<endl;	return	0;	//0	indicate	that	Cqueue	is	empty

else

{int	r=a[front];

front=(front+1)/size;

anyitem--;

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



}}

void	main()

{Cqueue	q1;

q1.addCQ(3);

q1.addCQ(5)	;

cout<<q1.delCQ()<<endl	;

q1.addCQ(7)	;

cout<<q1.delCQ()<<endl	;

q1.addCQ(8)	;

q1.addCQ(9)	;

cout<<q1.delCQ()<<endl;

cout<<q1.delCQ()<<endl;

}

Output	is

3

5

7

8

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



Pythan	Advanced	Programming

Data	structure:	A	group	of	data	which	can	be	processed	as	a	single	unit.

There	are	two	types	of	data	structures	-	Linear	and	Non-linear.

Array:	a	set	of	contiguous	data	of	similar	data	type.

Python	lists	are	actually	arrays	of	variable	length	and	have	elements	of	different	data	types.

Sequential	allocation	of	memory:	Elements	stored	in	sequence	of	their	declaration.

Traversal:	To	move	 in	a	 list	 in	a	 sequential	manner	 starting	 from	first	element	 to	 the	 last

element.	 Insertion	 of	 a	 new	 element	 in	 a	 sorted	 list	 has	 to	 be	 inserted	 at	 an	 appropriate

position	so	that	it	falls	in	order	with	the	other	elements	of	the	list.

Searching	algorithms	-	Linear	Search	and	Binary	Search.

In	linear	search,	the	search	element	is	compared	with	each	element	of	the	list,	starting	from

the	beginning	of	the	list	to	the	end	of	the	list.

Binary	 Search:	 This	 searching	 technique	 reduces	 the	 number	 of	 comparisons	 and	 hence

saves	on	processing	time.

For	binary	search,	the	array	should	be	sorted	in	either	ascending	or	descending	order.

Sorting	is	to	arrange	the	list	in	an	ascending	or	descending	order.

Sorting	techniques	-	Selection,	Bubble,	Insertion

Selection	Sort:	To	repeatedly	select	 the	smallest	element	 in	 the	unsorted	part	of	 the	array

and	then	swap	it	with	the	first	element	of	the	unsorted	part	of	the	list.

In	case	of	bubble	sort	algorithm,	every	adjacent	pair	 is	compared	and	swapped	 if	 they	are

not	in	the	right	order	Insertion	Sort-	Selects	the	next	element	to	the	right	of	what	was	already

sorted,	slides	up	each	larger	element	until	it	gets	to	the	correct	location

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



(Stacks	&	Queues	in	list)

LIFO:	Last-In	First-Out

FIFO:	First-In	First-Out

Stack:	A	stack	is	a	container	of	elements	that	are	inserted	and	removed	according	to	the	last-

in	first-out	(LIFO)	law.

Queue:	A	queue	is	a	container	of	elements,	which	are	inserted	and	removed	according	to	the

first-in	first-out	(FIFO)	law.

Infix	Expression:	Operator	is	in	between	the	operand.

Postfix	Expression:	Operators	are	written	after	the	operand.

Prefix	Expression:	Operators	are	written	before	operand.

(Data	File	Handling)

Files	are	used	to	store	huge	collection	of	data	permanently.	The	stored	data	can	later	be	used

by	performing	various	file	operations	like	opening,	reading,	writing	etc.

Access	modes	specify	the	type	of	operations	to	be	performed	with	the	opened	file.

read(),	readline()	and	readlines()	methods	are	available	for	reading	data	from	the	file.

write()	and	writelines()	are	used	for	writing	data	in	the	file.

There	are	two	functions	which	allow	us	to	access	a	file	in	a	non-sequential	or	random	mode.

They	are	seek()	and	tell()

Serialization	is	the	process	of	converting	a	data	structure	/	object	that	can	be	stored	in	non

string	format	and	can	be	resurrected	 later.	Serialization	can	also	be	called	as	deflating	 the

data	and	resurrecting	as	inflating	it.

Pickle	module	is	used	in	serialization	of	data.	This	allow	us	to	store	data	in	binary	form	in

the	file.	Dump	and	load	functions	are	used	to	write	data	and	read	data	from	file.	os	module

provide	us	various	functions	and	attributes	to	work	on	files.

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



(Exception	Handling	&	Generate	Functions)

An	 exception	 is	 a	 rarely	 occurring	 condition	 that	 requires	 deviation	 from	 the	 program's

normal	flow.

We	can	raise	and	handle	the	errors	in	our	program

For	raising	errors	statement	used	is	raise	[exception	name	[,	argument]]

For	handling	errors	statement	used	is	try	….	except……	else	finally.

Iterable	is	an	object	capable	of	returning	its	member	one	at	a	time.

An	iterator	is	an	object	that	provides	sequential	access	to	an	underlying	sequential	data.	The

underlying	sequence	of	data	is	not	stored	in	memory,	instead	computed	on	demand.

A	generator	is	user	defined	iterator.

A	generator	is	a	function	that	produces	a	sequence	of	results	 instead	of	simple	value	using

yield	Statement

https://studentbro.in https://https://studentbro.in https://https://studentbro.in


	1. CPP-Data Structures.pdf (p.1-37)
	2.  Computer Sc 02 Python Advanced Programming.pdf (p.38-40)

