CPP-Data Structures

Data Structures

In Computer Science, a data structure is a particular way of storing and organizing data in a
computer so that it can be used efficiently. Different kinds of data structures are suited to
different kinds of applications, and some are highly specialized to specific tasks. For
example, Stacks are used in function call during execution of a program, while B-trees are
particularly well-suited for implementation of databases. The data structure can be classified

into following two types:

Simple Data Structure: These data structures are normally built from primitive data types

like integers, floats, characters. For example arrays and structure.

Compound Data Structure: simple data structures can be combined in various ways to form
more complex structure called compound structures. Linked Lists, Stack, Queues and Trees

are examples of compound data structure.

Data Structure Arrays

Data structure array is defined as linear sequence of finite number of objects of same type

with following set of operation:

e C(Creating : defining an array of required size

e Insertion: addition of a new data element in the in the array

e Deletion: removal of a data element from the array

e Searching: searching for the specified data from the array

e Traversing: processing all the data elements of the array

e Sorting : arranging data elements of the array in increasing or decreasing order

e Merging : combining elements of two similar types of arrays to form a new array of

same type

In C++ an array can be defined as

Datatype arraynamelsize];

Where size defines the maximum number of elements can be hold in the array. For example

Get More Learning Materials Here : & m @) www.studentbro.in

admin
Typewritten text
CPP-Data Structures

float b[10];//b is an array which can store maximum 10 float values
int c[5];
Array initialization

void main()

{

int b[10]={3,5,7,8,9};//
cout<<b[4]<<endl;
cout<<b[5]<<end];

}

Output is

90

In the above example the statement int b[10]={3,5,7,8,9} assigns first 5 elements with the
given values and the rest elements are initialized with 0. Since in C++ index of an array starts
from O to size-1 so the expression b[4] denotes the 5th element of the array which is 9 and

b[5] denotes 6th element which is initialized with 0.

3 5 7 8 9 0 0 0 0 0

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9]

Searching
We can use two different search algorithms for searching a specific data from an array

e Linear search algorithm

e Binary search algorithm
Linear search algorithm

In Linear search, each element of the array is compared with the given item to be searched

for. This method continues until the searched item is found or the last item is compared.

#include<iostream.h>

int linear_search(int a[], int size, int item)

Get More Learning Materials Here : & m @) www.studentbro.in

{

int i=0;

while(i<size&& al[i]!=item)

i++;

if(i<size)

return i;//returns the index number of the item in the array
else

return -1;//given item is not present in the array so it returns -1 since -1 is not a legal index
number

}

void main()

{

int b[8]={2,4,5,7,8,9,12,15},size=8;

int item;

cout<<”enter a number to be searched for”;

cin>>item,;

int p=linear_search(b, size, item); //search item in the array b
if(p==-1)

cout<<item<<” is not present in the array”<<endl;

else

cout<<item <<” is present in the array at index no “<<p;

}

In linear search algorithm, if the searched item is the first elements of the array then the
loop terminates after the first comparison (best case), if the searched item is the last element
of the array then the loop terminates after size time comparison (worst case) and if the
searched item is middle element of the array then the loop terminates after size/2 time
comparisons (average case). For large size array linear search not an efficient algorithm but

it can be used for unsorted array also.
Binary search algorithm

Binary search algorithm is applicable for already sorted array only. In this algorithm, to
search for the given item from the sorted array (in ascending order), the item is compared

with the middle element of the array. If the middle element is equal to the item then index of

Get More Learning Materials Here : & m @) www.studentbro.in

the middle element is returned, otherwise, if item is less than the middle item then the item
is present in first half segment of the array (i.e. between 0 to middle-1), so the next iteration
will continue for first half only, if the item is larger than the middle element then the item is
present in second half of the array (i.e. between middle+1 to size-1), so the next iteration will
continue for second half segment of the array only. The same process continues until either
the item is found (search successful) or the segment is reduced to the single element and still

the item is not found (search unsuccessful).

#include<iostream.h>

int binary_search(int a[], int size, int item)

{

int first=0,last=size-1,middle;

while(first<=last)

{

middle=(first+last)/2;

if(item==a[middle])

return middle; // item is found

else if(item< a[middle])

last=middle-1; //item is present in left side of the middle element
else

first=middle+1; // item is present in right side of the middle element
}

return -1; //given item is not present in the array, here, -1 indicates unsuccessful search
}

void main()

{

int b[8]={2,4,5,7,8,9,12,15},size=8;

int item;

cout<<”enter a number to be searched for”;

cin>>item;

int p=binary_search(b, size, item); //search item in the array b
if(p==-1)

cout<<item<<” is not present in the array”<<endl;

else

Get More Learning Materials Here : & m @) www.studentbro.in

cout<<item <<” is present in the array at index no “<<p;

}

Let us see how this algorithm work for item=12
Initializing fi rst =0 ; last=size-1; where size=8
Iteration 1

A[0] a[l] [2] a[3] a[4] a[5] a[6] a[7]

| 2 | 4] 5 I 2 | 9 [12 15 |
first muddle last

First=0, last=7

middle=(first+last)/2=(0+7)/2=3 // note integer division 3.5 becomes 3
value of a[middle] i.e. a[3] is 7

7<12 then first= middle+1i.e.3+1 =4

Iteration 2

Al4] a[5] a[6] a[7]
| R e 12 | 15 |

f

first muddle last

first=4, last=7
middle=(first+last)/2=(4+7)/2=5
value of a[middle] i.e. a[5] is 9
9<12 then first=middle+1;5+1=6

Iteration 3

a[6] a]7]

7~

first muddle last

first=6,last=7
middle=(first+last)/2 = (6+7)/2=6

value of a[middle] i.e. a[6] is 12 which is equal to the value of item being search i.e.12 As a
successful search the function binary_search() will return to the main function with value 6

as index of 12 in the given array. In main function p hold the return index number.

Get More Learning Materials Here : & m @) www.studentbro.in

Note that each iteration of the algorithm divides the given array in to two equal segments
and the only one segment is compared for the search of the given item in the next iteration.
For a given array of size N= 2n elements, maximum n number of iterations are required to
make sure whether the given item is present in the given array or not, where as the linear
requires maximum 2n number of iteration. For example, the number of iteration required to
search an item in the given array of 1000 elements, binary search requires maximum

10 iterations where as linear search requires maximum 1000 iterations.

Inserting a new element in an array

We can insert a new element in an array in two ways

e If the array is unordered, the new element is inserted at the end of the array
e Ifthe array is sorted then the new element is added at appropriate position without
altering the order. To achieve this, all elements greater than the new element are

shifted. For example, to add 10 in the given array below:

a[0] a[1] [2] a[3] a[4] a[5] a[6] a[7] a[8]
2 4 5 7 8 11 12 15
Original array
a[0] a[l] [2] a[3] a[4] a[5] a[6] a[7] a[8]
2 4 5 7 R 11 12 15
Elements greater than 10 shifted to create free place to insert 10
a[0] a[l] [2] a[3] a[4] a[5] a[6] a[7] a[8]
2 4 5 i) R 10 11 12 15

Array after insertion

Following program implement insertion operation for sorted array

#include<iostream.h>

void insert(int a[], int &n, int item) //n is the number of elements already present in the array
{

int i=n-1;

while (i>=0 && a[i]>item)

{

a[i+1]=ali]; // shift the ith element one position towards right

Get More Learning Materials Here : & m @) www.studentbro.in

i

}

a[i+1]=item; //insertion of item at appropriate place
n++; /[after insertion, number of elements present in the array is increased by 1
}

void main()

{int a[10]={2,4,5,7,8,11,12,15},n=8;

int i=0;

cout<<“Original array is:\n”;

for(i=0;i<n;i++)

cout<<ali]<<”,

insert(a,n,10);

cout<<”\nArray after inserting 10 is:\n”;

for(i=0; i<n; i++)

cout<<ali]<<”,

}

Output is

Original array is:
2,4,5,7,8,11,12,15
Array after inserting 10 is:
2,4,5,7,8,10,11, 12,15

Deletion of an item from a sorted array

In this algorithm the item to be deleted from the sorted array is searched and if the item is
found in the array then the element is removed and the rest of the elements are shifted one
position toward left in the array to keep the ordered array undisturbed. Deletion operation
reduces the number of elements present in the array byl. For example, to remove 11 from

the given array below:

Get More Learning Materials Here : & m @) www.studentbro.in

al0] all] [2] a[3] a[4] a[5] a[6] a[7]
|2 | 4| 5|78 |1 |12]|15|
Onginal array
al0] all] [2] a[3] a[4] a[5] al6] al7]
2 4 5 1 e 12 | 15

Element removed
al0] all] [2] a[3] a[4] a[5] a[6] a[7]
2 4 5 7 8 12 [15
Array after shifting the rest element

Following program implement deletion operation for sorted array

#include<iostream.h>

void delete_item(int a[], int &n, int item) //n is the number of elements already present in the
array

{int i=0;

while(i<n && a[i]<item)

i++;
if (a[i]==item) // given item is found

{while (i<n)

{a[i]=a[i+1]; // shift the (i+1)th element one position towards left
i++;
}

cout<<”\n Given item is successfully deleted”;

}

else

cout<<”\n Given item is not found in the array”;
n--;

}

void main()

{int a[10]={2,4,5,7,8,11,12,15},n=8;
int i=0;

cout<<“Original array is :\n”;
for(i=0;i<n;i++)

cout<<a[i]<<”, «

Get More Learning Materials Here : & m @) www.studentbro.in

delete_item(a,n,11);

cout<<”\nArray after deleting 11 is:\n”;
for(i=0; i<n; i++)

cout<<ali]<<”, <

}

Output is

Original array is:
2,4,5,7,8,11,12,15

Given item is successfully deleted
Array after deleting 11 is:
2,4,5,7,8,12,15

Traversal
Processing of all elements (i.e. from first element to the last element) present in one-
dimensional array is called traversal. For example, printing all elements of an array, finding

sum of all elements present in an array.

#include<iostream.h>

void print_array(int a[], int n) //n is the number of elements present in the array
{int i;

cout<<”\n Given array is :\n”;

for(i=0; i<n; i++)

cout<<a[i]<<”, %

}

int sum(int a[], int n)

{int 1,s=0;

for(i=0; i<n; i++)

s=s+alil;

return s;

}

void main()

{int b[10]={3,5,6,2,8,4,1,12,25,13},n=10;
inti,s;

print_array(b,n);

Get More Learning Materials Here : & m @) www.studentbro.in

s=sum(b,n);
cout<<”\n Sum of all elements of the given array is : ”<<s;

}

Output is
Given array is
3,56,2,8,4,1,12, 25,13

Sum of all elements of the given array is : 79

Sorting

The process of arranging the array elements in increasing (ascending) or decreasing
(descending) order is known as sorting. There are several sorting techniques are available
e.g. selection sort, insertion sort, bubble sort, quick sort, heap short etc. But in CBSE syllabus

only selection sort, insertion sort, bubble sort are specified.

Selection Sort

The basic idea of a selection sort is to repeatedly select the smallest element in the remaining
unsorted array and exchange the selected smallest element with the first element of the
unsorted array. For example, consider the following unsorted array to be sorted using

selection sort.

Original Array
0 1 2 3 4 5 6
3 5 9 3 16 4 7

Iteration 1 : Select the smallest element from unsorted array which is 3 and exchange 3 with
the first element of the unsorted array i.e. exchange 3 with 8. After iteration 1 the element 3

is at its final position in the array.

0] 2 3 4 5 6
3 9 8 16 T

L

=9

Iteration 2: The second pass identify 4 as the smallest element and then exchange 4 with 5

0 1 2 A 4 5 6
3 4 9 8 16 5 7

Iteration 3: The third pass identify 5 as the smallest element and then exchange 5 with 9
0 1 2 3 4 5 6
3 4 5 8 16 9 7

Iteration 4: The third pass identify 7 as the smallest element and then exchange 7 with 8

Get More Learning Materials Here : & m @) www.studentbro.in

0 1 2 3 4 5 6
3 4 5 16 9 ¥
Iteration 5: The third pass identify 8 as the smallest element and then exchange 8 with 16
0 1 2 3 4 5 6
3 4 5 7 8 9 16

Iteration 6: The third pass identify 9 as the smallest element and then exchange 9 with 9

which makes no effect.
0 1 2 3 4 5 6
3 | 45| 78] 9]1e

The unsorted array with only one element i.e. 16 is already at its appropriate position so no

more iteration is required. Hence to sort n numbers, the number of iterations required is n-1,
where in each next iteration, the number of comparison required to find the smallest
element is decreases by 1 as in each pass one element is selected from the unsorted part of
the array and moved at the end of sorted part of the array .

For n=7 the total number of comparison required is calculated as

Pass1: 6 comparisons i.e. (n-1)

Pass2: 5 comparisons i.e. (n-2)

Pass3: 4 comparisons i.e. (n-3)

Pass4: 3 comparisons i.e. (n-4)

Pass5: 2 comparisons i.e. (n-5)

Pass6: 1 comparison i.e. (n-6)=(n-(n-1))

Total comparison for n=(n-1)+(n-2)+(n-3)+ +(n-(n-1))= n(n-1)/2
7=6+5+4+3+2+1=7*6/2=21;

Note: For given array of n elements, selection sort always executes n(n-1)/2 comparison
statements irrespective of whether the input array is already sorted(best case), partially

sorted(average case) or totally unsorted(i.e. in reverse order)(worst case).

#include<iostream.h>

void select_sort(int a[], int n) //n is the number of elements present in the array
{int i, j, p, small;

for(i=0;i<n-1;i++)

{small=ali]; // initialize small with the first element of unsorted part of the array
p=1; // keep index of the smallest number of unsorted part of the array in p
for(j=i+1; j<n; j++) //loop for selecting the smallest element form unsorted array
{if(a[jl<small)

Get More Learning Materials Here : & m @) www.studentbro.in

{small=a[j];

p=j;

}

}// end of inner loop---—------

[[--—---—-- exchange the smallest element with ith element-------------
a[pl=alil;

a[i]=small;

[f---mmmm- end of exchange-------------

}

}//end of function

void main()

{int a[7]={8,5,9,3,16,4,7},n=7,i;
cout<<”\n Original array is :\n”;
for(i=0;i<n;i++)

cout<<a[i]<<”, %

select_sort(a,n);

cout<<”\nThe sorted array is:\n”;
for(i=0; i<n; i++)

cout<<a[i]<<”, %

}

Output is

Original array is
8,59,3,16,4,7
The sorted array is
3,4,5,7,8,9,16

Insertion Sort

Insertion sort algorithm divides the array of n elements in to two subparts, the first subpart
contain a[0] to a[k] elements in sorted order and the second subpart contain a[k+1] to a[n]
which are to be sorted. The algorithm starts with only first element in the sorted subpart
because array of one element is itself in sorted order. In each pass, the first element of the
unsorted subpart is removed and is inserted at the appropriate position in the sorted array

so that the sorted array remain in sorted order and hence in each pass the size of the sorted

Get More Learning Materials Here : & m @) www.studentbro.in

subpart is increased by 1 and size of unsorted subpart is decreased by 1. This process
continues until all n-1 elements of the unsorted arrays are inserted at their appropriate
position in the sorted array.

For example, consider the following unsorted array to be sorted using selection sort

Original array

0 | 2 3 4 5 i)
h 5 9 3 16 4 7
Sorted unsorted

Initially the sorted subpart contains only one element i.e. 8 and the unsorted subpart
contains n-1 elements where n is the number of elements in the given array.

Iteration 1: To insert first element of the unsorted subpart i.e. 5 into the sorted subpart, 5 is
compared with all elements of the sorted subpart starting from rightmost element to the
leftmost element whose value is greater than 5, shift all elements of the sorted subpart whose
value is greater than 5 one position towards right to create an empty place at the appropriate
position in the sorted array, store 5 at the created empty place, here 8 will move from

position a[0] to a[1] and a[0] is filled by 5. After first pass the status of the array is:

0 | i 3 4 5 i)
A 8 9 3 16 4 T
Sorted unsorted

Iteration 2: In second pass 9 is the first element of the unsorted subpart, 9 is compared with
8, since 8 is less than 9 so no shifting takes place and the comparing loop terminates. So the
element 9 is added at the rightmost end of the sorted subpart. After second pass the status of

the array is:

0 | 2 3 4 5 6
5 5 9 3 16 4 T
Sorted unsorted

Iteration 3: in third pass 3 is compared with 9, 8 and 5 and shift them one position towards

right and insert 3 at position a[0]. After third pass the status of the array is:

0 1 2 i 4 5 B
3 5 8 9 & 4 T
Sorted unsorted

Iteration 4: in forth pass 16 is greater than the largest number of the sorted subpart so it

remains at the same position in the array. After fourth pass the status of the array is:

Get More Learning Materials Here : & m @) www.studentbro.in

0 | 2 3 4 5 i
3 5 B 9 16 4 7
sorted unsorted
Iteration 5: in fifth pass 4 is inserted after 3. After third pass the status of the array is:
0 1 2 3 4 5]
3 4 5 8 9 16 7
Sorted unsorted

Iteration 6: in sixth pass 7 is inserted after 5. After fifth pass the status of the array is:

0 | 2 3 4 5 i)
ETE NN EY EY YR
Sorted

Insertion sort take advantage of sorted(best case) or partially sorted(average case) array
because if all elements are at their right place then in each pass only one comparison is
required to make sure that the element is at its right position. So for n=7 only 6 (i.e. n-1)
iterations are required and in each iteration only one comparison is required i.e. total
number of comparisons required= (n-1)=6 which is better than the selection sort (for sorted
array selection sort required n(n-1)/2 comparisons). Therefore insertion sort is best suited for

sorted or partially sorted arrays.

#include<iostream.h>

void insert_sort(int a[],int n) //n is the no of elements present in the array
{int i, j,p;

for (i=1; i<n; i++)

{p=alil;

j=i-1;

//inner loop to shift all elements of sorted subpart one position towards right
while(j>=0&&alj]>p)

{

alj+1]=aljl;

[[----==--- end of inner loop
a[j+1]=p; //insert p in the sorted subpart
}

Get More Learning Materials Here : & m @) www.studentbro.in

void main()

{

int a[7]={8,5,9,3,16,4,7},n=7.i;
cout<<”\n Original array is :\n”;
for(i=0;i<n;i++)

cout<<a[i]<<”, %
insert_sort(a,n);

cout<<”\nThe sorted array is:\n”;
for(i=0; i<n; i++)

cout<<a[i]<<”, %

}

Output is

Original array is
8,5,9,3,16,4,7

The sorted array is
3,4,5,7,8,9,16

Bubble Sort

Bubble sort compares a[i] with a[i+1] for all i=0..n-2, if a[i] and a[i+1] are not in ascending
order then exchange a[i] with a[i+1] immediately. After each iteration all elements which are
not at their proper position move at least one position towards their right place in the array.
The process continues until all elements get their proper place in the array (i.e. algorithm
terminates if no exchange occurs in the last iteration)

For example, consider the following unsorted array to be sorted using selection sort

Original array

¥ v
0 1 2 3 4 3 b
8 5 9 3 16 4 7

Iteration 1: The element a[0] i.e. 8 is compared with a[1] i.e. 5, since 8>5 therefore exchange
8 with 5.

=
—_
WO | P =

ad | Lad
o
]
i Y
=]

LY
e o]

Get More Learning Materials Here : & m @) www.studentbro.in

The element a[1] i.e. 8 and a[2] i.e. 9 are already in ascending order so no exchange required

¥ ¥
0 1 2 3 4 5 B
Ly [& | % | & [[0 [F |
The element a[2] i.e. 9 and a[3] i.e. 3 are not in ascending order so exchange a[2] with a[3]
¥ '
0 1 2 3 4 5 6
5 8 3 9 16 4 7
The element a[3] i.e. 9 and a[4] i.e. 16 are in ascending order so no exchange required
v ¥
0 1 2 3 4 5]
5 8 3 9 16 4 7
The element a[4] i.e. 16 and a[5] i.e. 4 are not in ascending order so exchange a[4] with a[5]
0 1 2 3 4 5 6 + ¥
5 8 9 3 4 16 7
The element a[5] i.e. 16 and a[6] i.e. 7 are not in ascending order so exchange a[5] with a[6]
0 1 2 3 4 5]
5 8 9 3 4 7 16

Since in iteration 1 some elements were exchanged with each other which shows that array
was not sorted yet, next iteration continues. The algorithm will terminate only if the last
iteration do not process any exchange operation which assure that all elements of the array
are in proper order.

Iteration 2: only exchange operations are shown in each pass

0 1 2% v 4 5 6
5 8 9 3 4 7 16
0 1 2 iy 4 5 f
| 5 | 8 | | 9 | 4 | 7 | 16 |
0 1 2 3 4 5 ¥ f
5 8 3 4 9 7 16
0 1 2 3 4 5 6
5 8 3 4 7 9 16

In iteration 2 some exchange operations were processed, so, at least one more iteration is
required to assure that array is in sorted order.

Iteration 3:

Get More Learning Materials Here : & m @) www.studentbro.in

0 1¥ 2v 3 4 5 6
L & | 8 [3. [% | F [& | ¥ |
0 | 2 e R 4 5 6
5 3 % 4 7 9 16
0 1 2 : LA \ S 6
5 3 4 % 7 g 16
0 1 2 3 4 3 6
L 5 1 3 [4 [7 1 8 | 9 | 16|
Iteration 4:
ov 1 ¥ 2 3 4 5 6
5 3 4 7 R g 16
0 ¥ I¥ 3 4 5 6
L 3 | 5 | 4 [7 | 8 [9 | 16 |
0 | 2 3 4 5 6
3 4 5 7 R g 16
Iteration 5:
) 1 2 3 4 5 6
3 4 5 7 8 g 16

In iteration 5 no exchange operation executed because all elements are already in proper

order therefore the algorithm will terminate after 5th iteration.

Merging of two sorted arrays into third array in sorted order
Algorithm to merge arrays a[m](sorted in ascending order) and b[n](sorted in descending

order) into third array C[n+m] in ascending order.

#include<iostream.h>

Merge(int a[], int m, int b[n], int c[])// m is size of array a and n is the size of array b

{int i=0; // i points to the smallest element of the array a which is at index 0

int j=n-1;// j points to the smallest element of the array b which is at the index m-1 since b is
/[sortet in descending order

int k=0; //k points to the first element of the array c

while(i<m&&;j>=0)

{if(alil<b[j])

Get More Learning Materials Here : & m @) www.studentbro.in

c[k++]=a[i++]; // copy from array a into array ¢ and then increment i and k

else

c[k++]=b[j--]; // copy from array b into array c and then decrement j and increment k
}

while(i<m) //copy all remaining elements of array a

clk++]=ali++];

while(j>=0) //copy all remaining elements of array b

c[k++]=b[j--];

}

void main()

{int a[5]={2,4,5,6,7},m=5; //a is in ascending order

int b[6]={15,12,4,3,2,1},n=6; //b is in descending order
int c[11];

merge(a, m, b, n, ¢);

cout<<”The merged array is :\n”;

for(int i=0; i<m+n; i++)

cout<<c[i]<”, «;

}

Output is
The merged array is:
1,2,2,3,4,4,5,6,7,12,15

Two dimensional arrays
In computing, row-major order and column-major order describe methods for storing

multidimensional arrays in linear memory. Following standard matrix notation, rows are
identified by the first index of a two-dimensional array and columns by the second index.
Array layout is critical for correctly passing arrays between programs written in different
languages. Row-major order is used in C, C++; columnmajor order is used in Fortran and
MATLAB.

Row-major order
In row-major storage, a multidimensional array in linear memory is accessed such that rows

are stored one after the other. When using row-major order, the difference between

Get More Learning Materials Here : & m @) www.studentbro.in

addresses of array cells in increasing rows is larger than addresses of cells in increasing

columns. For example, consider this 2x3 array:

1 2 3
4 5 6

An array declared in C as

int A[2][3] ={{1, 2,3}, {4,5,6} };

would be laid out contiguously in linear memory as:

123456

To traverse this array in the order in which it is laid out in memory, one would use the

following nested

loop:

for(i=0;1<2;i++)

for (j=0;j<3;j++)

cout<<A[i][jl;

The difference in offset from one column to the next is 1*sizeof(type) and from one row to
the next is 3*sizeof(type). The linear offset from the beginning of the array to any given

element A[row][column] can then be computed as:

offset = row*NUMCOLS + column

Address of element A[row][column] can be computed as:

Address of A[row][column]=base address of A + (row*NUMCOLS + column)* sizeof (type)
Where NUMCOLS is the number of columns in the array.
The above formula only works when using the C, C++ convention of labeling the first element

0. In other words, row 1, column 2 in matrix A, would be represented as A[0][1]
Note that this technique generalizes, so a 2x2x2 array looks like:

int A[2][2][2] = {{{1,2}, {3,4}}, {{5,6}, {7,8}}};
and the array would be laid out in linear memory as:
12345678

STACKS, QUEUES AND LINKED LIST

Stack

Get More Learning Materials Here : & m @) www.studentbro.in

In computer science, a stack is a last in, first out (LIFO) data structure. A stack can is
characterized by only two fundamental operations: push and pop. The push operation adds
an item to the top of the stack. The pop operation removes an item from the top of the stack,
and returns this value to the caller. A stack is a restricted data structure, because only a
small number of operations are performed on it. The nature of the pop and push operations
also mean that stack elements have a natural order. Elements are removed from the stack in
the reverse order to the order of their addition: therefore, the lower elements are those that

have been on the stack the longest. One of the common uses of stack is in function call.

== o =

Push 1y Pop

Stack using array

#include<iostream.h>

const int size=5

class stack

{int a[size]; //array a can store maximum 5 item of type int of the stack
int top; //top will point to the last item pushed onto the stack

public:

stack(Q{top=-1;} //constructor to create an empty stack, top=-1 indicate that no item is
/[present in the

array

void push(int item)

{If(top==size-1)

cout<<”stack is full, given item cannot be added”;

else

a[++top]=item; //increment top by 1 then item at new position of the top in the array a

Get More Learning Materials Here : & m @) www.studentbro.in

}

int pop()

{If (top==-1)

{out<<”Stack is empty

return -1; //-1 indicates empty stack
}

else

return af[top--];//return the item present at the top of the stack then decrement top by 1
}

void main()

{ stack s1;

s1.push(3);

s1l.push(5);

cout<<sl.pop(<<endl;
cout<<sl.pop(<<endl;
cout<<sl.pop 0;

}

Output is

5

3

Stack is empty -1
In the above program the statement stack s1 creates s1 as an empty stack and the constructor

initialize top by -1.

Initially stack 1s empty stack atter s1.pushi(3) stack after s1.push(5)
4
3 5 *
- |
2 N 3
1 1 2
0 top—*1 3
- . top —* 0 3 ol 3

After first s1.pop() statement, the item 5 is removed from the stack and top moves from 1 to 0

Get More Learning Materials Here : & m @) www.studentbro.in

— b B

—

—
=

3

After second s1.pop() statement, the item 3 is removed from stack and top moves from 0 to -1

top

which indicates that now stack is empty.

4

= L

0
top —*-1

After third s1.pop() statement the pop function display error message “stack is empty” and

returns -1 to indicating that stack is empty and do not change the position of top of the stack.

Linked list
In Computer Science, a linked list (or more clearly, "singly-linked list") is a data structure that
consists of a sequence of nodes each of which contains data and a pointer which points (i.e.,

a link) to the next node in the sequence.

A linked list whose nodes contain two fields: an integer value and a link to the next node

The main benefit of a linked list over a conventional array is that the list elements can easily
be added or removed without reallocation or reorganization of the entire structure because
the data items need not be stored contiguously in memory or on disk .Stack using linked lists
allow insertion and removal of nodes only at the position where the pointer top is pointing
to.

Stack implementation using linked list

#include<iostream.h>

struct node

{i

nt item; //data that will be stored in each node

node * next; //pointer which contains address of another node

}; //node is a self referential structure which contains reference of another object type node

Get More Learning Materials Here : & m @) www.studentbro.in

class stack

{node *top;

public:

stack() //constructor to create an empty stack by initializing top with NULL

{ top=NULL; }

void push(int item);

int pop0);

~stack();

¥

void stack::push(int item) //to insert a new node at the top of the stack

{node *t=new node; //dynamic memory allocation for a new object of node type
if(t==NULL)

cout<<”Memory not available, stack is full”;

else

{t->item=item;

t->next=top; /mewly created node will point to the last inserted node or NULL if
/[stack is empty

top=t; //top will point to the newly created node

}

}
int stack::pop()//to delete the last inserted node(which is currently pointed by the top)

{if(top==NULL)

{cout<<”Stack is empty \n”;

return 0; // 0 indicating that stack is empty

}

else

{node *t=top; //save the address of top in t

int r=top->item; //store item of the node currently pointed by top
top=top->next; // move top from last node to the second last node
delete t; //remove last node of the stack from memory

return r;

}

}

Get More Learning Materials Here : & m @) www.studentbro.in

stack::~stack() //de-allocated all undeleted nodes of the stack when stack goes out of scope

{node *t;
while(top!=NULL)
{t=top;

top=top->next;

delete t;

}

5

void main()

{

stack s1;

s1.push(3);
s1l.push(5);
s1.push(7);
cout<<sl.pop(<<endl;
cout<<sl.pop(<<endl;
cout<<sl.pop(<<endl;
cout<<sl.pop(O<<endl;
}

Output is

7

5

3

Stack is empty 0

In the above program the statement stack s1; invokes the constructor stack() which create an

empty stack object s1 and initialize top with NULL.

top » NULL

After statement s1.push(3) the stack become

top —»

3

|. NULL

After statement s1.push(5) the stack become

top .

Get More Learning Materials Here : & m

[E— —|f. NULL

@ www.studentbro.in

After statement s1.push(7) the stack become

top ——» 7 4] 5 __..| 3 4 s NULL

After the first s1.pop() statement the node currently pointed by top (i.e. node containing 7) is
deleted from the stack, after deletion the status of stack is

top —» 3 —1 » NULL

After the third s1.pop() statement the node currently pointed by top (i.e. node containing 3) is
deleted from the stack, after deletion the stack become empty i.e.
Top—— NULL
After the fourth s1.pop() statement, the error message “stack is empty“ displayed and the
pop() function return 0 to indicate that stack is empty.
Application of stacks in infix expression to postfix expression conversion
Infix expression operand1 operator operand2 for example a+bh
Postfix expression operandl1 operand2 operator for example ab+

Prefix expression operator operandl operand?2 for example +ab

Some example of infix expression and their corresponding postfix expression

Infix Expression Postfix expression
a*(b-c)/e abc-*e/
(a+b)*(c-d)/e ab+cd-*e/
(a+b*c)/(d-e)+f abc*+de-/f

Algorithm to convert infix expression to postfix expression using stack

Let the infix expression INEXP is to be converted in to equivalent postfix expression
POSTEXP. The postfix expression POSTEXP will be constructed from left to right using the
operands and operators (except “(“, and “)”) from INEXP. The algorithm begins by pushing a
left parenthesis onto the empty stack, adding a right parenthesis at the end of INEXP, and
initializing POSTEXP with null. The algorithm terminates when stack become empty.

The algorithm contains following steps

1. Initialize POSTEXP with null

Get More Learning Materials Here : & m @) www.studentbro.in

Add ‘) at the end of INEXP

Create an empty stack and push ‘(‘ on to the stack
Initialize i=0,j=0

Do while stack is not empty

If INEXPJi] is an operand then
POSTEXP[j]=INEXP[i]

[=i+1

j=5+1

S s W

Goto step 5

7. If INEXPIi] is ‘(‘ then push (INEXPI[i])
i=i+1
Goto step 5

8. If INEXPI[i] is an operator then

While precedence of the operator at the top of the stack > precedence of operator

POSTEXP[j]=pop0
J=j+1
End of while
Push (INEXP[i])
I=i+1
Goto step 5
9. If INEXP[i] is)’ then

While the operator at the top of the stack is not (‘
POSTEXP[j]=pop0
J=j+1
End while
Pop()

10. End of step 5

11. End algorithm

For example convert the infix expression (A+B)*(C-D)/E into postfix expression showing stack

status after every step.

Stack status (bold letter

Symbol scanned from infix
shows the top of the stack)

Postfix expression

Get More Learning Materials Here : & m

@S www.studentbro.in

(
(((
A ((A
+ ((+ A
B ((+ AB
) (AB+
* * AB+
(*(AB+
C (*(AB+C
- (- AB+C
D *C- AB+CD
) (* AB+CD-
/ (/ AB+CD-*
E (AB+CD-*E
) AB+CD-*E/

Answer: Postfix expression of (A+B)*(C-D)/E is AB+CD-*E/
Evaluation of Postfix expression using Stack
Algorithm to evaluate a postfix expression P.

1. Create an empty stack
2. i=0
3. while P[i] != NULL
if P[i] is operand then
Push(P[i])
[=i+1
Else if P[i] is a operator then

Operand2=pop()

Get More Learning Materials Here : & m @& www.studentbro.in

Operand1=pop()
Push (Operand1 operator Operator2)
End if
4. End of while
5. return pop() // return the calculated value which available in the stack.

End of algorithm
Example: Evaluate the following postfix expression showing stack status after every step

8: 2: +, 5) 3;_3 *:4/

token

scanned .

¢ Stack status (bold letter shows the top of the stack) Operation

rom
after processing the scanned token performed

postfix

expression

8 8 Push 8

2 8,2 Push 2
Op2=pop() i.e
2
Op1l=pop() i.e

N 10 p1=pop()
8
Push(op1+op2)
i.e. 8+2

5 10,5 Push(5)

3 10, 5,3 Push(3)
Op2=pop() i.e.
3
Op1=pop() i.e.

- 10, 2 p1=pop0
5
Push(opl-op2)
i.e.5-3

Get More Learning Materials Here : & m @) www.studentbro.in

20

Op2=pop() i.e.
2

Op1l=pop() i.e.
10
Push(op1l-op2)
i.e. 10*2

20,4

Push 4

Op2=pop() i.e.
4

Op1l=pop() i.e.
20
Push(op1/op2)
i.e. 20/4

NULL

Final result 5

Pop 5 and

return 5

Evaluate the following Boolean postfix expression showing stack status after every step

True, False, True, AND, OR, False, NOT, AND

token
scanned
Stack status (bold letter shows the top of the .
from . Operation performed
stack) after processing the scanned token
postfix
expression
True True Push True
False True, False Push False
True True, False, True Push True
Op2=pop() i.e. True
Op1l=pop() i.e. False
AND True, False Push(Op2 AND Op1) i.e.
False AND
Get More Learning Materials Here : m @) www.studentbro.in

True=False

Op2=pop() i.e. False
Op1l=pop() i.e. True

OR True)
Push(Op2 OR Op1) i.e.
True OR False=True
False True, False Push False

Op1l=pop() i.e. False
NOT True, True Push(NOT False) i.e.
NOT False=True

Op2=pop() i.e. True
Op1=pop() i.e. True
AND True Push(Op2 AND Op1) i.e.
True AND

True=True

. Pop True and Return
NULL Final result True
True

UEUE

Queue is a linear data structure which follows First In First Out (FIFO) rule in which a new
item is added at the rear end and deletion of item is from the front end of the queue. In a

FIFO data structure, the first element added to the queue will be the first one to be removed.

Linear Queue implementation using Array
#include<iostream.h>

const int size=5;

class queue

{int front, rear;

int a[size];

public:

queue({front=0;rear=0;} /Constructor to create an empty queue
void addQ()

{ if(rear==size)

Get More Learning Materials Here : & m @) www.studentbro.in

cout<<”queue is full<<end];
else

a[rear++]=item;

}

int delQ()

{if(front==rear)

{cout<<”queue is empty”<<endl; return 0;}

else

return a[front++];

1}

void main()

{queue q1;

ql.addQ(3);
ql.addQ(5);
ql.addQ(7);
cout<<ql.delQ()<<endl;
cout<<ql.delQ(O<<endl;
cout<<ql.delQ(O<<endl;
cout<<ql.delQ(O<<endl;
}

Output is
3
5
7

Queue is empty 0

In the above program the statement queue q1 creates an empty queue q1.

Front

¥
al0] a[l] a[2] a[3] af4]
N R A
&

Rear

After execution of the statement q1.addQ(3), status of queue is

Get More Learning Materials Here : &

@S www.studentbro.in

Front
40] afl] al2] a[3] al4]
3

,

Rear

After execution of the statement q1.addQ(5), status of queue is

Front
¥
al0] afl] af2] a[3] af4]
[3 [5s
A
Rear
After execution of the statement q1.addQ(7), status of queue is
Front
v
af0] afl] a[2] a[3] a[4]
G s 7 11
Rear

After execution of the first cout<<ql.delQ() statement, 3 is deleted from queue status of

queue is
Front
¥
al0] all] a[2] af3] a[4]
3 5 7
*
Rear

After execution of the second cout<<ql.delQ() statement, 5 is deleted from the queue status of

queue is
Front
¥
al0] afl] af2] af[3] a[4]
AN
%
Rear

After execution of the third cout<<q1l.delQ() statement, 7 is deleted from the queue. The

status of queue is Empty

Front

¥
al0] a[l] al2] a[3] A[4]
3| 5| 7

*

Rear

Get More Learning Materials Here : & m @) www.studentbro.in

After execution of the fourth cout<<ql.delQ() statement, the message “queue is empty*“

displayed and status of queue is

Front
r
al0] afl] al2] a[3] a[4]
3 3 7
Fh:;r

Note that since rear and front moves only in one direction therefore once the rear cross the
last element of the array(i.e. rear==size) then even after deleting some element of queue the
free spaces available in queue cannot be allocated again and the function delQ() display

error message “queue is full”.

Queue using linked list

#include<iostream.h>

struct node{

int item;

node *next;};

class queue

{node *front, *rear;

public:

queue() {front=NULL; rear=NULL;}//constructor to create empty queue
void addQ(int item);

int delQQ;};

void queue::addQ(nt item)

{node * t=new node;

if(t==NULL)

cout<<”memory not available, queue is full”<<endl;

else

{t->item=item,;

t->next=NULL;

if (rear==NULL) //if the queue is empty

{rear=t; front=t; //rear and front both will point to the first node

}

else

Get More Learning Materials Here : & m @) www.studentbro.in

{rear->next=t;

rear=t;

|83

int queue::delQ()

{

if(front==NULL)
cout<<”queue is empty”<<return 0;
else

{node *t=front;

int r=t->item;
front=front->next; /move front to the next node of the queue
if(front==NULL)
rear==NULL;

delete t;

returnr;

}

}

void main(){

queue q1;

ql.addQ(3);
ql.addQ(5);
ql.addQ(7);
cout<<ql.delQ(O<<endl;
cout<<ql.delQ(O<<endl;
cout<<ql.delQ(O<<endl;
cout<<ql.delQ(O<<endl;
}

Output is
3
5
7

Queue is empty 0

Get More Learning Materials Here : & m @) www.studentbro.in

In the above program the statement queue q1; invokes the constructor queue() which create

an empty queue object q1 and initialize front and rear with NULL.

front ~—_

NULL

—
rear -

After statement q1.addQ(3) the stack become

front

3 | }— NuLL
T

Icdr

After statement q1.addQ(5) the stack become

fmm

3 _—'L: — NULL

rcar
After statement q1.addQ(7) the stack become

i’rum

3 ——-| 5 - 4 NULL

rcar
After the first q1.delQ() statement the node currently pointed by front (i.e. node containing 3)

is deleted from the queue, after deletion the status of queue is
front

¥

v

(]
1w

T —— NULL

redar
After the second q1.delQ() statement the node currently pointed by front (i.e. node

containing 5) is deleted from the queue, after deletion the status of queue is

v front
L’ | +—
reaf

After the third q1.delQ() statement the node currently pointed by front (i.e. node containing

NULL

7) is deleted from the queue, after deletion the queue become empty therefore NULL is a

assigned to both rear and front

Get More Learning Materials Here : & m @) www.studentbro.in

Front=rear= NULL;
After the fourth q1.delQ() statement, the error message “queue is empty“ displayed and the

pop(function return 0 to indicate that queue is empty.

Circular queue using array

Circular queues overcome the problem of unutilised space in linear queues implemented as
array. In circular queue using array the rear and front moves in a circle from 0,1,2...size-1,0,

and so on.

#include<iostream.h>

const int size=4;

class Cqueue

{int a[size];

int front,rear,anyitem;

public:

void Cqueue({front=0;rear=0;anyitem=0;}

void addCQ(nt item);

int delCQOQ);

}

void Cqueue::addCQ(int item){

if(front==rear && anyitem>0)

cout<<”Cqueue is full”’<<endl;

else

{a[rear]=item;

rear=(rear+1)%size; //rear will move in circular order
anyitem++; //value of the anyitem contains no of items present in the queue
1}

int Cqueue::delCQO{

if(front==rear&& anyitem==0)

cout<<”’Cqueue is empty”<<endl; return 0; //0 indicate that Cqueue is empty
else

{int r=a[front];

front=(front+1)/size;

anyitem--;

Get More Learning Materials Here : & m @) www.studentbro.in

1

void main()

{Cqueue q1;
q1l.addCQ(3);
ql.addCQ(5);
cout<<ql.delCQ()<<endl ;
ql.addCQ(7);
cout<<ql.delCQ(<<endl;
ql.addCQ(8);
ql.addCQ(9);
cout<<ql.delCQ()<<endl;
cout<<ql.delCQ(<<endl;
}

Output is
3

5
7
8

Get More Learning Materials Here : & m @) www.studentbro.in

Pythan Advanced Programming

Data structure: A group of data which can be processed as a single unit.

There are two types of data structures - Linear and Non-linear.

Array: a set of contiguous data of similar data type.

Python lists are actually arrays of variable length and have elements of different data types.
Sequential allocation of memory: Elements stored in sequence of their declaration.

Traversal: To move in a list in a sequential manner starting from first element to the last
element. Insertion of a new element in a sorted list has to be inserted at an appropriate

position so that it falls in order with the other elements of the list.
Searching algorithms - Linear Search and Binary Search.

In linear search, the search element is compared with each element of the list, starting from

the beginning of the list to the end of the list.

Binary Search: This searching technique reduces the number of comparisons and hence

saves on processing time.

For binary search, the array should be sorted in either ascending or descending order.
Sorting is to arrange the list in an ascending or descending order.

Sorting techniques - Selection, Bubble, Insertion

Selection Sort: To repeatedly select the smallest element in the unsorted part of the array

and then swap it with the first element of the unsorted part of the list.

In case of bubble sort algorithm, every adjacent pair is compared and swapped if they are
not in the right order Insertion Sort- Selects the next element to the right of what was already

sorted, slides up each larger element until it gets to the correct location

Get More Learning Materials Here : & m @) www.studentbro.in

(Stacks & Queues in list)
LIFO: Last-In First-Out
FIFO: First-In First-Out

Stack: A stack is a container of elements that are inserted and removed according to the last-
in first-out (LIFO) law.

Queue: A queue is a container of elements, which are inserted and removed according to the
first-in first-out (FIFO) law.

Infix Expression: Operator is in between the operand.

Postfix Expression: Operators are written after the operand.

Prefix Expression: Operators are written before operand.
(Data File Handling)

Files are used to store huge collection of data permanently. The stored data can later be used

by performing various file operations like opening, reading, writing etc.

Access modes specify the type of operations to be performed with the opened file.
read(), readline() and readlines() methods are available for reading data from the file.
write() and writelines() are used for writing data in the file.

There are two functions which allow us to access a file in a non-sequential or random mode.
They are seek() and tell()

Serialization is the process of converting a data structure / object that can be stored in non
string format and can be resurrected later. Serialization can also be called as deflating the

data and resurrecting as inflating it.

Pickle module is used in serialization of data. This allow us to store data in binary form in
the file. Dump and load functions are used to write data and read data from file. os module

provide us various functions and attributes to work on files.

Get More Learning Materials Here : & m @) www.studentbro.in

(Exception Handling & Generate Functions)

An exception is a rarely occurring condition that requires deviation from the program's

normal flow.

We can raise and handle the errors in our program

For raising errors statement used is raise [exception name [, argument]]
For handling errors statement used is try except...... else finally.
Iterable is an object capable of returning its member one at a time.

An iterator is an object that provides sequential access to an underlying sequential data. The

underlying sequence of data is not stored in memory, instead computed on demand.
A generator is user defined iterator.

A generator is a function that produces a sequence of results instead of simple value using

yield Statement

Get More Learning Materials Here : & m @) www.studentbro.in

	1. CPP-Data Structures.pdf (p.1-37)
	2. Computer Sc 02 Python Advanced Programming.pdf (p.38-40)

